m. p. $130-131^{\circ}$. The substance is easily soluble in hot water, alcohol and acetone, less soluble in chloroform, insoluble in cold water, benzene, ether and petroleum ether.

Anal. After drying at 100° in vacuo over H₂SO₄, calcd. for C₁₀H₁₃O₂N: C, 67.00; H, 7.32; N, 7.82. Found: C, 66.78; H, 7.11; N, 7.72.

 ϵ -(*p*-Aminophenyl)-caproic Acid.—Ten grams of ϵ -(*p*-nitrophenyl)-caproic acid reduced in the same manner as the nitrophenylbutyric acid yielded 7.5 g. of crude ϵ -(*p*-

nitrophenyl)-caproic acid. It was recrystallized from 80 volumes of boiling water. Long narrow microscopic platelets, m. p. 108–109°. The substance is soluble in hot water, alcohol and acetone, less soluble in chloroform and benzol, insoluble in cold water, ether and petroleum ether.

Anal. After drying at 100° in vacuo over H₂SO₄, calcd. for C₁₂H₁₇O₂N: C, 69.52; H, 8.27; N, 6.76. Found: C, 69.46; H, 8.36; N, 6.64.

NEW YORK, N. Y. RECEIVED DECEMBER 30, 1933

COMMUNICATIONS TO THE EDITOR

ANOMALOUS FRIEDEL-CRAFTS REACTIONS WITH FURANS

Sir:

The compound formed by interaction of benzene, 2-furoic acid and aluminum chloride is α -naphthoic acid and not 3-phenyl-2,3-dihydro-2furoic acid [THIS JOURNAL, **49**, 565 (1927)]. The formation of α -naphthoic acid, probably through an endoxy compound as a consequence of 1,4-addition, may be general with related types. Other catalysts and experimental conditions, with a miscellany of compounds, are being investigated.

In the reaction between 2-furfural, isopropyl chloride and aluminum chloride in carbon disulfide [*ibid.*, **55**, 4197 (1933)], the isopropyl group is introduced into a β -position despite the availability of an α -position. Bromination of the corresponding acid gives a 5-bromo- β -isopropyl-2furoic acid identical with that obtained by the oxidation of the bromoaldehyde obtained from 5-bromo-2-furfural, isopropyl chloride and aluminum chloride. The same acid is obtained by hydrolysis of the ester resulting by interaction of ethyl 5-bromo-2-furoate, isopropyl chloride and aluminum chloride.

Department of Chemistry Iowa State College	HENRY GILMAN M. MCCORKLE
Ames, Iowa	N. O. CALLOWAY
RECEIVED DECEMI	BER 26, 1933

THE MUTAROTATION OF α -d-GLUCOSE IN DEUTERIUM WATER

Sir:

In a previous communication [THIS JOURNAL, 55, 5056 (1933)] it has been reported that the mutarotation of α -d-glucose in 60% heavy water at 18° has a velocity coefficient of 0.00290 as compared to 0.00546 found under identical conditions in ordinary distilled water. With the production of 100% deuterium water (D₂O) in this Laboratory, it became possible to determine the velocity coefficient of the mutarotation of α -d-glucose in this medium. A 0.6030-g. sample of pure α -d-glucose was dissolved in 3.3210 g. of D₂O of d_4^{20} 1.1055 and the rotation of the solution (d_{20}^{20} 1.175) was read at certain intervals of time in a 2-dm. semi-micro tube with sodium light at 20°. The first reading (α_0 38.50°) was taken seven minutes after the addition of D₂O. The results obtained are shown in Table I.

	TABLE I	
Time, minutes	α	$k_1 + k_2 = \frac{1}{i} \log \frac{\alpha_{\infty} - \alpha_0}{\alpha_{\infty} - \alpha}$
0	$\alpha_0 = 38.50$	• • • • •
15	37.05	0.00221
50	34.09	.00221
90	31.29	.00220
120	29.50	.00221
180	26.72	,00220
300	23 , 06	.00222
697	19.35	.00222
1440	$\alpha_{\infty} = 18.83$	Mean 0.00221

The velocity coefficient for α -d-glucose in ordinary distilled water is given by Hudson and Dale [THIS JOURNAL, 39, 320 (1917)] as $k_1 + k_2 =$ 0.00635 at 20°, and as $k_1 + k_2 =$ 0.00225 at 10°. A comparison of these values with the mean value for $k_1 + k_2$ in Table I shows that the velocity of the mutarotation of α -d-glucose in pure D₂O at 20° is identical with that found in ordinary distilled water at 10°. In this case, therefore, the effect of the deuterium water on the velocity of the mutarotation is equivalent to a drop of 10° in the temperature. The specific rotation of the equilibrium solution in D₂O is $[\alpha]_{D}^{20}$ 18.83° ×